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USE OF SCIENTIFIC INQUIRY TO EXPLAIN COUNTEIUNTUITWE
OBSERVATIONS

Mary Jean Lynch, North Central College
John J. Zenchak, North Central College

Background

The National Research Council (1990, P. 6) concluded that "... no reform of science

education is likely to be successful until science is taught effectively in elementary school." At

the heart of many of the more effective science teaching programs is inquiry (Anderson &

Mitchener, 1994). Inquiry is an activity-based, process-oriented approach to teaching. With this

approach, "... intrinsic motivation is more likely to occur" (Hameyer, Akker, Anderson, &

Ekholm, 1995, p. 3). An inquiry curriculum can have significant positive effects on student

performance (Shymansky, Hedges, & Woodworth, 1990; Shymansky, Kyle, & Alport, 1983;

Suchman, 1960; Von Secker & Lissitz, 1999). When compared to students in control classrooms

in which comparable content was presented from textbooks, students in inquiry-based classrooms

outperformed the control groups in process skills, creativity, attitudes, logical reasoning, and

science content knowledge. Improved performance has been found at all grade levels

(Bredderman, 1983) with the greatest gains in content and process skills occurring in students

who were academically or economically disadvantaged (Bredderman, 1982). The evidence for

the benefits of an inquiry curriculum is so strong that the National Science Education Standards

(National Research Council, 1996) include explicit recommendations for teaching science as a

process and include process as a content area (Content Standard A, Science as Inquiry).

Despite the preponderance of evidence supporting the effectiveness of an activity-based,

process-oriented approach to the teaching of science, teachers still rely heavily on the use of



textbooks and lectures. The American Association for the Advancement of Science (1990, p.28)

concluded that "... conventional science teaching suppresses students' natural curiosity and leaves

them with the impression that they are incapable of understanding science," but many teachers

continue to have concerns about a process-oriented approach. They believe that the focus on

process in inquiry-based curricula goes too far and that too much content is sacrificed; traditional

teaching methods are the only way to cover enough material. The perceived minimal content in

inquiry-based curricula is not the only concern; what content is included is often not understood

by students. Many times, the most interesting hands-on activities are not developmentally

appropriate; thus, students are not cognitively ready to understand the concepts that explain

activities they enjoy. Under these conditions, student interest cannot be sustained.

Many hands-on activities are just demonstrations in which students handle materials to

illustrate concepts. These activities may initially capture students' attention. However, many of

the activities are either so highly structured that they minimize exploration or are so loosely

structured that they minimize conceptual understanding. To maximize learning, students need

opportunities to explore in a way that enhances their understanding.

The Demonstration-Experiment

We have designed a series of inquiry-based classroom activities for the elementary and

middle school levels that excite students' curiosity, draw students into the experiences, use

simple materials, and explain concepts at developmentally appropriate levels. Our approach

addresses teachers' concerns about process versus content and developmental appropriateness

(Lynch & Zenchak, 2001; Zenchak & Lynch, 2000b).

The core of our approach to inquiry is the "demonstration-experiment," a structured

exploration activity which begins with a discrepant event and then requires the use of scientific



inquiry to explain the counterintuitive observations (Lynch & Zenchak, 1995; Lynch & Zenchak,

1997; Lynch & Zenchak, 1999; Lynch & Zenchak, 2001; Zenchak & Lynch, 1996; Zenchak &

Lynch, 1998; Zenchak & Lynch, 2000a; Zenchak & Lynch, 2000b; Zenchak, Lynch, & Can las,

1994). Many scientific concepts can be taught through this approach. For example,

"Cannonball" gives students an opportunity to explore conservation of linear momentum at a

grade-appropriate level. As illustrated in Figure 1, the teacher sets up two similar situations in

which a number of differences (independent variables) have been embedded. Without any

explanation, the teacher drops the two balls into the tube in Set-up 1, resulting in the balls staying

in the tube. In Set-up 2, the teacher drops the two balls, resulting in the top ball shooting out of

the tube. Students are asked to observe carefully what takes place, individually describe in

writing what they observe, and compare their descriptions with the descriptions of other students

and generate a common list of independent variables and constants. For "Cannonball" the

variables are the surface at the base of the tubes (carpet versus hard), the presence of holes in the

heavy ball (present versus absent), and the position of the heavy ball relative to the lighter ball

(above or below the lighter ball). The constants include the size of the balls, the height from

which they are dropped, and the tube into which they are dropped; in addition, the balls are in

contact when they are dropped simultaneously into the tube.

Figure 1. Original set-up for "Cannonball." Variables: Surface at base of tubes, presence of
holes in heavy ball, and position of the heavy ball.



Based on the independent variables, the teacher guides the students as they generate a list

of hypotheses about what occurred. One hypothesis is generated for each independent variable

and takes the form of an "If ... then" statement that links the independent variable with the

outcome (dependent variable). The teacher repeatedly reminds the students that, in order to

identify the reason why the outcome was different between the two situations, they must focus on

a single variable while making sure that nothing else changes. In other words, all other variables,

except the one in the hypothesis, must be held constant. A hypothesis testing the independent

variable surface might be "Holding all other variables constant, if the surface on which the balls

are dropped is important, then changing the surface will determine whether one ball shoots out of

the tube."

After the hypotheses are formulated, students construct a separate experiment to test each

hypothesis. They need to keep the original constants and change the other independent variables

into additional constants. Thus, to test the hypothesis that surface is important, students must use

one carpeted surface and one hard surface; they might choose to use balls without holes and place

the heavy ball on the bottom (see Figure 2). As long as one surface is carpeted and the other is

hard, there are three alternative tests of this hypothesis that are equally valid (see Figure 3).

Figure 2. Test of hypothesis that surface is important. Variable: Surface at base of tubes (hard
versus carpet). New constants: No holes in heavy ball, heavy ball on bottom.
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(a) (b) (c)

Figure 3. Alternative tests of hypothesis that surface is important. Variable: Surface at base of
tubes (hard versus carpet). (a) New constants: Holes in heavy ball, heavy ball on bottom. (b)
New constants: Holes in heavy ball, heavy ball on top. (c) New constants: No holes in heavy
ball, heavy ball on top.

Next, based on their observations of the initial demonstration, students predict what will

happen in each experiment. In the test of the surface variable, students should predict that a ball

will shoot out of the tube when the balls are dropped onto the hard surface but not when they are

dropped onto a carpeted surface because that is what happened in the initial demonstration.

Finally, students conduct all of the experiments they design. They then compare their predictions

to the outcomes of the experiments. When their prediction matches the actual outcomes of the

experiment, the students know that they have identified the important variable. When their

prediction does not match the actual outcomes of the experiment, the students know they can rule

out that variable. For "Cannonball" students find that their predictions match the outcomes for

the test of the hypothesis about the position of the heavy ball relative to the lighter ball; thus, the

position of the heavy ball is the causal variable. After students have identified through their

experiments which variable is responsible for the different outcomes, the teacher develops the

concepts that explain the results at an age-appropriate level and emphasizes everyday

applications.



The demonstration-experiment is unique in a number of ways beyond its combining of

discrepant events, inquiry, and structured exploration. First, the situations are deceptively

simple. The "equipment" in most demonstration-experiments consists of a few inexpensive

common materials that do not necessarily seem "scientific." Because the materials are

nonthreatening and do not require training to use, they do not cause teachers and students to

doubt their ability to handle them. In fact, the equipment is so simple that nobody expects

anything out of the ordinary to take place. However, the demonstration-experiment immediately

captures students' attention when small, seemingly inconsequential differences in the two set-ups

cause very obvious, yet unexpectedly different results. Second, because the results are

unanticipated, the initial differences must be considered in identifying potential causes. Third,

students are engaged in the activity because it challenges them to "write the recipe," instead of

merely following a cookbook-like approach to finding a solution to the problem presented in the

demonstration. They become aware that there are several possible appropriate experiments to

test the effect of an independent variable. In turn, teachers are freed to facilitate student inquiry

rather than supply them with specific directions and the final answers.

Students are drawn into the experience for two reasons the two similar situations

produce different results, and initially it is not obvious which of the differences embedded in the

demonstration-experiment caused the results. Much curiosity is generated and observers

immediately start questioning. Through this approach students learn a format for conducting

experiments which is structured enough to focus them on the underlying concept, yet loose

enough for them to be creative in designing and doing controlled experiments in which only one

variable is changed and the others are held constant. Teachers discuss the findings as they relate



to the lives of their students. Terminology is minimized to such an extent that it is not seen as

the focus and therefore the learner can focus on the underlying concepts.

The demonstration-experiment focuses students on factors which are essential in

promoting their understanding of science process and content: the demonstration clearly captures

the attention of the students by playing with their minds, not just their senses; it focuses them on

variables which may potentially explain what they have just seen; and it prepares them to begin

to explore those potential explanations in a format which is structured to encourage both

exploration and conceptual understanding.
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